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Outline 

New magnet lattice  
 
• Why? 
• Magnet requirement 

Magnet design 
•  Specifications 
•  Constraints 
 

Magnetic measurements 
•  Integral 
•  local 

Summary 
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Electron Beam Parameters 

Parameter Existing lattice New lattice 
Energy [Gev]	

 6.03 6.03 

Circumference [m]	

 844 844 

Beam Current [mA]	

 200 200 

Horizontal emittance [nm]	

 4 0.16 

Vertical emittance [pm]	

 5 3 

Energy Spread [%]	

 0.1 0.1 

Beta at ID center  , H x V [m]	

 37.6  x 3 (high Beta) 
0.37 x 3 (low Beta) 

 3.35 x 2.79 

Beam Size at ID center  H x V [µm] 	

 400 x 3.9 
50 x 3.9 

23.5 x 3.7 

Beam Divergence at ID H x V [µrad]	

 10 x 1.3 
107 x 1.3  

6.9 x 1.3 

Reduction of horizontal emittance by a factor of 25 
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1.6 m W150

 4 m Helical U88

3.2 m U42

4.8 m U35

4 m CPMU18

 Present lattice (plain)
 New lattice (dashed )

0.85 T bending magnet

 4 m CPMU14

Electron beam:	


6  GeV	


I=0.2 A	



Higher brilliance 

 H emittance V emittance Energy spread [%] 

Present 4 nm 5 pm 0.1 

New lattice 0.16 nm 3 pm 0.1 
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ESRF magnet lattice today: DBA (2BA) 

New Lattice 7BA 

Constraint: 
•  same energy 
•  fit new  magnet lattice in existing ring (844 m) 
•  Keep existing BM sources 

Emittance reduction 

 ! x ! E
2 / N 3

Electron energy 

Number of identical dipoles 
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 ESRF S10 Lattice 

Quadrupole 
55 to 80 Tm-1 

Dipoles with  
longitudinal gradient 

0.6 -> 0.15 T 
0.4 ->  0.15 T 

Sextupoles 
~1500Tm-2 

Octupoles ( ~ 50 000 Tm-3) 

High gradient quadrupoles 
100 Tm-1 

Combined dipole quadrupoles 
0.85 T / 45 Tm-1 

and 0.3 T / 50 Tm-1 
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Magnet type Quantity Total magnetic length[m] share 

Dipole 7 11.38 65% 
Quadrupole 16 4.17 24% 
Sextupole 6 1.68 10% 
Octupole 4 0.4 2% 

All magnets 33 17.6 100% 

Total length of a cell: 26.376 m 
Length of ID straight section: 5.8 m  

~ 3 m of drift space distributed between magnets 
~ 8 m presently 

 
Limited longitudinal space is a specificity of the new ESRF lattice 

 

ESRF Accelerator upgrade: 1056 magnets to build  

Compact magnet lattice 
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Aperture and good field region 

S10 All  Horizontal [mm] Vertical [mm] 
Vacuum chamber aperture (radius)  15.1 10.1 
Good field region (radius) 8.3 5.5 

S10 Centre (high gradient) Horizontal [mm] Vertical [mm] 
Vacuum chamber aperture (radius) 8.3 5.5 
Good Field Region (radius) 7 5 
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Initial parameters for  preliminary study 
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Road map 

•  Project not yet funded (decision early 2015) 

•  Go ahead  with prototype development and magnetic measurements 

•  2013-2015 

•  Magnetic design 
•  Mechanical design 
•  First prototypes 

•  Improvement/development of magnetic measurement systems 

•  stretched wire/vibrating wire benches 
•  Local field mapping 
•  Other … 

•  …… 2019 all magnet installed 



•  3D  magnetic modeling using RADIA 

Native field integral calculation 
Electron beam tracking in magnet 
Efficient parameterization for various optimization 

§  Pole shape 
§  Geometrical errors budget 
§  Electrical power 
§ …. 
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•   Achievable Magnet performance/ field quality in defined aperture 

•  Impact on vacuum chamber technology 

•  Impedance issue,….., etc 

•  Energy efficiency 

Magnet design approach 

P.M dipole 
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Insertion Device Photon Beam Electron Beam 

 
•  Small bore radius = tight  mechanical tolerances 

•  Mechanical length (limited space) à short coils 

•  Photon beam path specific to SR sources (open magnets) 

•  … etc 

Geometrical design constraints 



Building Block 

Sm2Co17 Magnet 
Min. gap 90 mm 

Iron yoke 

Pole 
Vertical field along beam path 

(3D simulations) 

PM weight ~ 25kg 
Total weight  400 ~500 kg 
Magnetic length: 2.07 m 

Dipole with longitudinal gradient 
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Field tuning 
 
Dedicated movable shims : ± 3 % 
 
Coil: ± 100 A.turns ± 1.5 % of total 
Deflection angle 

ESRF has a long experience with Permanent magnet systems (Insertion Devices)  



Pole shape optimization 

∆B/B0 

∆B/B,<10-4  (-15 mm <x<15 mm)  
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20 mm 
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Magnet modules arrangement 

Whole magnet oriented along mean beam path 
Modules translated  horizontally by few millimeters 
Residual offsets vs local magnetic axis ±2.5 mm 

All magnets with longitudinal gradient= 640 modules with similar shape and different amount of magnet blocks  

~ 3.2 tons  ( 380 dm3) of Sm2Co17 permanent magnets needed for all 128 magnets 
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Combined dipole/quadrupoles 
Purpose : restore exiting BM source points for the new lattice 

0.85 T 0.4 T soft end 

6mrad @ 0.4 T 
6mrad @ 0.85 T 

0.334 T / 50 Tm-1 

 
0.85 T / 45 Tm-1 

 

6mrad @ 0.85 T 

6mrad @ 0.334 T 

Magnetic design under study 
 
Possibly based on Permanent Magnets as other dipoles 
 
Field tunability  ….. 

Existing lattice 

New lattice 



High gradient quadrupoles 

No laminations 
•  Storage ringà Constant field 
•  Stringent mechanical tolerances 
•  Demanding alignment 

Field quality 
•  Asymmetric GFR (∆G/G<10-3) 
•  Optimization of the pole profile 
 

Optimization criteria 
•  Field quality in GFR 
•  Power consumption 
•  Compactness 
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High gradient quadrupole design 

 
Design parameters 
•  Spec: 100 T/m x 335 mm 
•  Bore radius: 11 mm 
 
 
 
 

Magnet length 
•  Mechanical length: 360 mm (iron

+coils) 
•  1 kW 
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High gradient quadrupole design 

Gradient vs. current Variation of multipole content  
(reference: 130 A) 

Magnet close to saturation 
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Integrated sextupole : 420 T/m nominal  
 

2D sextupole: 1500 T/m2 

Bore radius 19  mm 
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Sextupole magnet 

Mechanical length < 300 mm 

Sextupole homogeneity < 1% in GFR 
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Laminate yoke 



Octupoles 

Needed for this lattice 

Horizontal homogeneity of integrated octupole 
 < 10 % in GFR 
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Integrated octupole> 5000 T/m2 

Mechanical length ≤ 100 mm 
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Magnetic measurements 

Stretched wire: 
•  Integrated multipoles analysis 
•   magnetic center 
•  Other variants (vibrating wire) 
 
Adequate for  

•  Quadrupoles 
•  Sextupoles 
•  Octupoles 
•  Dipole modules 

• Curved magnets will need dedicated curved coils 

ESRF stretched wire bench 

Integral measurements 
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Local field measurements 

Rely on existing experience with Insertion Device Hall Mapping 

Several units in operation 
•  Modern mutli-axis control 
•  High positioning accuracy 
•  Appropriate for open magnets 
•  Search coil vs hall sensors 

Used for  
•  Curved magnets (dipole) 
•  Combined dipole/quadrupole 

To be probably adapted for dipoles & combined function magnets 
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Usual alignment based on fiducialisation not sufficient 
 
In situ alignment on girder with 
stretched wire/ vibrating wire seems better option 
 
 
RMS alignment error of 20 µm looks feasible ( wire length  ~ 3m) 
 
(see  Stretched wire measurements of magnet girders, G. Le Bec on  Wednesday) 

Difficult and essential part  

Appropriate for straight magnet assembly (eg. quadrupoles sextupoles, etc) 
 
Magnet girder with combined dipole/quadrupole need other approach 

Magnet alignment 



Summary 

Very challenging magnets in focus @ ESRF 

•  Field performance close to magnetic saturation for quadrupoles, sextupoles 

•  High stability permanent magnet materials must enter in the process 

•  Preliminary magnetic design to be completed (combined function magnets) 
 
 

•  Magnetic measurements 

•  Stretched/vibrating wire is a good option 

•  Local field mapping to be refined 
 

More to come at next IMMWs ….. 
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